Isa-tope Isa-tope Isa-tope

NSF HI-TEC Conference 2023

DUE #2054997

Agenda

- Introductions 5 minutes
- Overview of ISA-TOPE Project 10 minutes
- Sharing and Discussion of Developed Curriculum 20 minutes
- Review of Other Resources Available from ISA-TOPE
 Project 5 minutes
- Q&A and Wrap-up 5 minutes

Introductions

Carl Borleis

Shannon Mohn

• Forrest Brownlee

Overview of ISA-TOPE Project

ISA-TOPE

- What is ISA-TOPE? (What's in a name?)
- Lessons Learned
 - Comfort Level of Instructors
 - Industry Buy-in and loyalty
 - Changing Technology/Increasing cost
- Best Practices
 - "Can I Borrow That?"
 - Finding/Involving Outside SMEs
 - Capitalizing on existing partnerships
 - ASE
 - AED

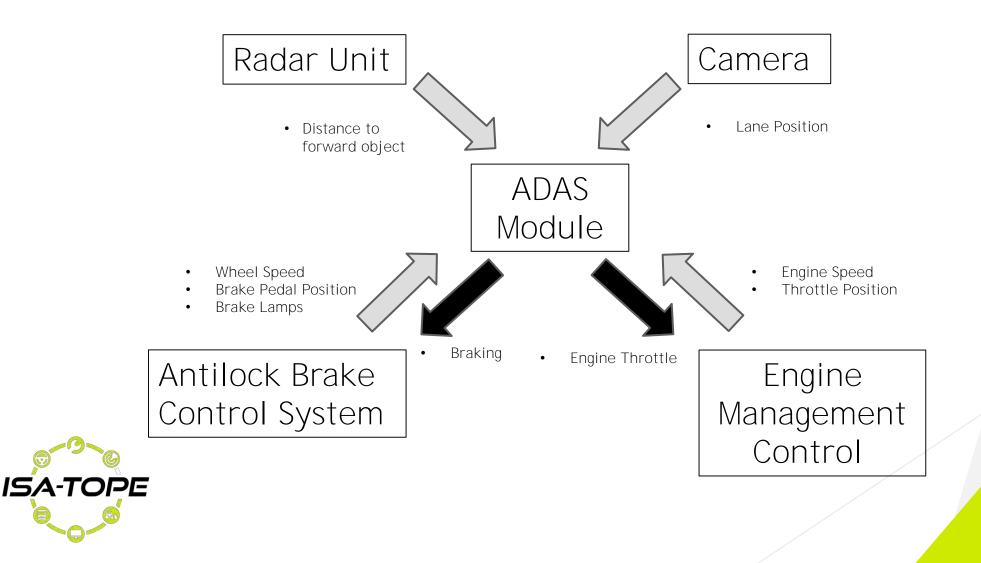
ISA-TOPE

NSF/ATE/Mentor Connect

Developed Curriculum

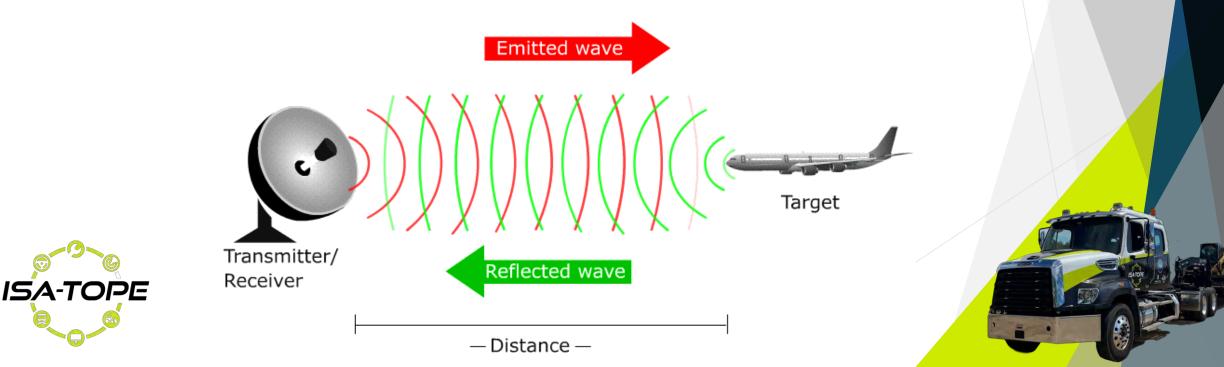
- Truck Curriculum Maintenance/Repair
- 18 Task Sheets
- 4 Power Points

This Photo by Unknown Author is licensed under CC BY-SA

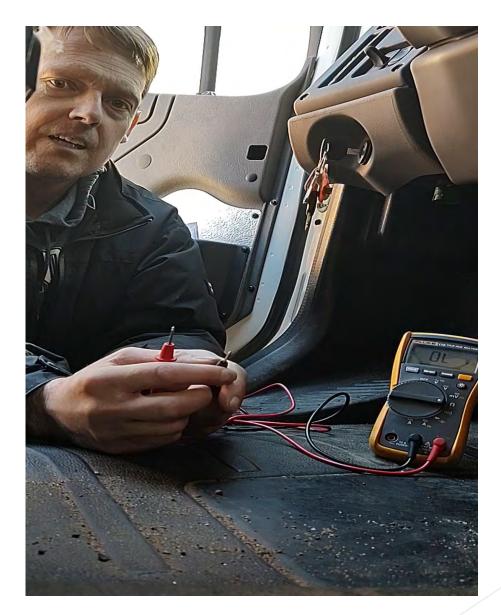

KSA's - Truck

Shannon

	Knowledge	Skills	Ability		
Module 4: Diagnostics, Repair, & Calibration		Perform	ADAS Calibration following	manufacturer sequence.	
Module 3: ADAS Components	Describe the inputs and outputs of the ADAS control system.	Describe the function of all ADAS components and what type of signal they produce/receive.	Diagnose the component and root cause of an ADAS failure.		Perform any module programming needed for component replaceme
Module 2: ADAS Networks	Describe how ADAS related modules communicate data.	Describe the different components of a network. Wires, resisters, modules, gateway, diagnostics.	Demonstrate performing network tests, resistance checks, perform scope checks of networks.		Diagnose ADAS circuits using a sca tool; check for module communication errors (data communication bus systems); determine needed action
Module 1: Introduction to ADAS Systems	and demonstrate knowledge of how the ADAS system works on it. Identify the various switches and instrument panel indicators that are ADAS related.	describe the operation ADAS components, such as: radar, lidar, cameras, ultrasonic semsors, related modules, etc.	of which other systems are related to ADAS (ex. ABS, ECM, etc.).	inspection (pre-service), paying special attention to ADAS components.	would cause a technician to perfor calibration.


ADAS System Communications

Shannon


Radar

- Radar has been around since before World War 2.
- You may know it best when hearing about aviation. It works by emitting radar waves that bounce off objects, and the waves that come back will generate an image of what the object is. Radar can also judge distance based on the time it takes for the signal to return and whether it is moving towards or away.

Shannon

Example of Embedded Video in PowerPoint

Developed Curriculum

- Truck Curriculum Operation
- 2 Lesson Plans
- 1Power Point

This Photo by Unknown Author is licensed under CC BY-SA

Operation - Crash Mitigation System (CMS)

Should work automatically once vehicle is above 17 MPH; display changes from "NO CMS" to "CMS"

Info on display is color coded: Blue = no vehicle detected ahead Green = vehicle detected - safe distance Yellow = vehicle detected - caution Red = vehicle detected - system activated



Operation – Lane Alert

Developed Curriculum

- Equipment Curriculum
- 6 PowerPoints
- 10 Task Sheets

This Photo by Unknown Author is licensed under CC BY-SA

KSA's - Equipment

FORTEST

Legend:	Knowledge	SKIIIS	Ability		
Logondy	Knowlodgo	Skills	Ability		
	proper calibration				
Module 4: Diagnostics, Repair, & Calibration	importance of a				
	reasoning behind calibration and the				
	Understand the				
	Lindowstowal the	produce/receive	lanure.		
		they produce/receive	root cause of failure.	replace components	replacement
Systems Components		what type of signal	component and	Properly mount and	
Module 3: Autonomous	of the AOAS system	components and	Diagnose the	AOAS system.	needed for
	inputs and outputs	function of all AOAS	to properly	components in the	programming
	Describe various	Describe the	-	Repair or replace	Perform any modul
Module 2: Autonomous Systems Networks		gateway, diagnostics	networks.		
	network	resisters, modules,	scope checks of	modules/resisters.	
	benefits of having a	network. Wires,	checks, perform	replace terminating	
	network and the	components of a	tests, resistance	wiring, identify and	network module
	modules talk on a	different	performing network	within the network	Reprogramig of a
	Describe how	Describe the	Demonstrate	Perform repairs	Perform
Module 1:Introduction to Autonomous Systems	particular vehicle.				
	works on a	componentor	together.		
	the AOAS system	components:	systems are tied		
	knowledge of how	Identify the following	knowledge of which		

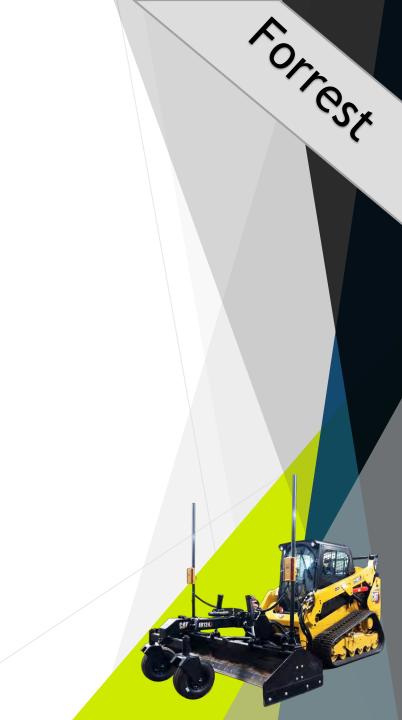
ISA-TOPE

Terms to understand

- 2D sensors relating to elevation and slope
- ► LR 410 laser receiver detects laser plane for height reference
- CB450 control box may be used with 2D or 3D systems with correct harnesses

FORT CSX

Note : for detailed product information, access to the following is required:


- Cat Sis Web 2.0
- Trimble Learn

Things learned on the equipment

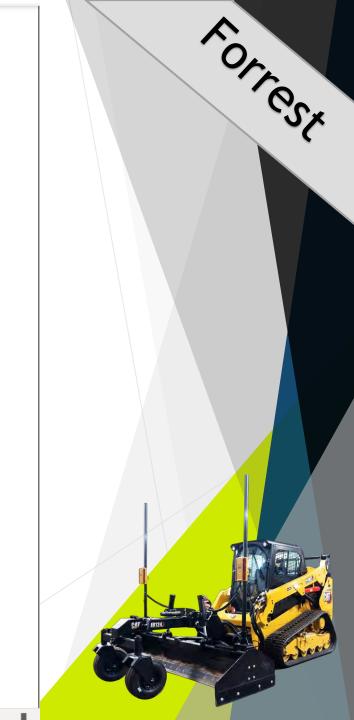
- Need to have a good understanding on running and operating
- Understand how the 2D system works with machine
- ► When you understand how the machine and attachment work
- ► Then you can bug, and trouble shoot the machine and equipment

Equipment Technician

Task Sheet 1.5	t 1.5 Benching and running the 2D system	
Objective	In this task sheet you will Bench and run the 2d system	
Tools and Equipment	You will need to have completed tasks 1-4	
Needed		

NAME _____

Year/Make/Model of equipment Being Worked on


1. Start the machine and bring the blade to your reference mark. What are you accomplishing when you bench the blade?

2. After the blade is benched what are the 2 functions of this system?

3. Run function 1. describe how the box blade functions

4. Run function 2. describe how the box blade functions

Running the 2D system

- ► After installing the receivers and CB450 controller.
- ► Find a suitable spot for the laser and tripod.
- Start the laser adjust and let the laser self-level
- Power up the machine and adjust the receivers so the laser is hitting them center (solid red light if you're too low it will be a slow flash if to high it will be fast)

FOFFESE

▶ Now you're ready to Bench the machine!

2D and Laser Systems

• 2D refers to elevation and slope

• Laser Receivers provide the elevation on machines that are set up and configured to use them.

Developed Curriculum

- How to gain access
- TCOE Website
- ATE Connect
- NCAT website

.9,

Resources Available from ISA-TOPE

- Truck
- Track Loader
- Laser units
- Equipment Diagnostic Tools
- Other Can I Borrow That
- <u>TCOE Website</u>

9

This Photo by Unknown Author is licensed under CC BY-SA

ISA-TOPE Going Forward

- How will "Can I Borrow That?" evolve? Workshops?
- ISA-TOPE 2.0
 - Electric?
 - Newer technology (Cascadia)?
 - Different professional development model
 - Broader scope (additional sectors)?
 - Additional partnerships (Schools)
 - In-State
 - Surrounding states

<u>This Photo</u> by Unknown Author is licensed under \underline{CC} <u>BY-ND</u>

Car

Questions?

Get in in touch.

ISA-TOPE.ORG

Carl Borleis

Director of Program Excellence, TCOE PI, ISA-TOPE 651-423-8577 <u>carl.borleis@dctc.edu</u>

Shannon Mohn

Automotive Instructor, M-State MTTIA Training Coordinator Co-PI, ISA-TOPE 218-299-6563 Shannon.mohn@minnesota.edu

Forrest Brownlee

Diesel Technology Instructor, Minnesota North - Hibbing MTTIA Board of Directors SME, ISA-TOPE 218-293-6862 forrest.brownlee@minnesotanorth.edu

Chris Hadfield, Ed.M.

Executive Director, TCOE Co-PI, National Center for Autonomous Technologies (NCAT) Co-PI, ISA-TOPE 651-423-8311 Chris.hadfield@dctc.edu