Engaging STEM Students During a Pandemic

Orangeburg-Calhoun Technical College
TRANSPORTATION, DISTRIBUTION AND LOGISTICS
~ ADVANCED MANUFACTURING TECHNOLOGIES

My name is Debra Jones and I am the PI on an NSF grant awarded in 2018 to Orangeburg-Calhoun Technical College in Orangeburg, SC. Along with the Co-PI, Richard Murphy, we want to welcome you to a most unusual Hi-TEC conference.
Orangeburg-Calhoun Technical College is located in the Lowcountry of South Carolina. The school is a Predominantly Black Institution of about 2300 students.
The NSF-ATE Grant

Transportation, Distribution, and Logistics
- The backbone of the supply chain
- Planning, management and movement of people and goods
- Facilitate the operation of the supply chain

Mechatronics
- Electronics, mechanics, robotics, and information systems
- Manufacture goods in the supply chain
- Guarantee the smooth operation of the supply chain

Funded by The National Science Foundation’s Advanced Technological Education Program

We call our project Simul-ATE for short because the goal of this project is to prepare technicians for a 21st century workplace by exposing them to a multi-disciplinary work environment. The goal is to simulate the workplace where they will interact with employees from other areas in the company.

The project involves 2 areas, TDL and Advanced Manufacturing. Students will “cross train” between the technologies in both areas.

This project is somewhat unique in that it exposes students to other areas of the college. Students can see where their job fit into the big picture, the Supply Chain. This should prepare them for some of the decisions that they may make while on the job.
The purpose of the grant is to expand STEM education into other areas of the college, as well as expose STEM students to other disciplines. The goal is to educate a more well-rounded employee who has the skills and knowledge to contribute more than technical knowledge. Employers expect employees to be able to offer suggestions for improving processes. They also need employees with good communication and teamwork skills.
This project is unique in that it exposes the student to more than TDL and Advanced Manufacturing. The student will learn that manufacturing is a part of a larger supply chain.

- Logistics/Supply Chain Technologies
- Oracle NetSuite
- Geographic Information Systems (GIS)
- Advanced manufacturing technologies
- Mechatronics
- Robotics
- Graphic design
- Precision manufacturing
Advanced Manufacturing students will be able to collaborate with students in other areas: business management and logistics. Students in Business and TDL will collaborate with students in Advanced Manufacturing.

Everyone involved in this project will learn how their work affects each other, and how they fit into the enterprise that employs them.

The goal is to produce a workforce that understands how the decisions they make impact other areas of the business that employs them.
Transfer Opportunities

- Coastal Carolina University
- Savannah State
- University of South Carolina - Upstate

Students from our programs have the opportunity to transfer to a 4-year college or university through articulation agreements that were signed as part of the grant project.
This is list of our industry partners.
Amazon Distribution
Zeus Industrial Products
Continental Tire
Starbucks
Showa Denko
The Okonite Company
Universal Trade Solutions
GKN Aerospace
Devro
Husqvarna
DAK Americas
SI Group (formerly Albemarle Chemicals)
Food Lion Distribution
Outreach is a significant part of the project. Before the pandemic, outreach was done in person. Really easy for hands-on technical education, so life was good. The next ten slides show some pictures from our 2019 summer camp.
Supply chain management
Geographic Information Systems (ArcGIS)
Warehouse and Distribution
Transportation, distribution, and logistics
Automated Guided Vehicles
Robotics
Advanced manufacturing
Mechatronics
3D Printing/Product Design
CNC Plasma Cutting
During the pandemic, we had to find another way to fulfill the outreach promise that we made. We realized that we couldn’t afford to lose an entire year of outreach, so we hoped that the move to virtual would capture a lot of the summer campers who normally attend our camps. We also hoped to increase our outreach to kids who might not be able to attend activities on campus, or never had the opportunity because of the cost.
Considerations

Equity concerns/technology access:
- We serve a largely rural area where access to high-speed internet is impossible for many students.
- Many of our prospective campers come from low-income households that may not have a computer.
- Local school districts issue laptops and hotspots for kids to use during the school year, but that equipment was returned to the schools at the end of the school year.

No need for transportation or classroom capacity limits – expanding reach and access in that way:
- Previous (traditional) camps have been limited to 25 campers because of classroom capacity and available materials.

Translating hands-on instruction and activities for a virtual environment:
- For robotics, we typically use VEX robots which could not be distributed to students off-campus.
- Software: we could not expect the campers to download and install software.
- LMS: we needed a place to house the activities so that campers would have access, and the school did not want to create accounts in our LMS for non-
students.
Synchronous vs. asynchronous instruction and activities:
• Both might be hard due to lack of internet access.
• In the camp application, we asked about technology needs.
• Then, we contacted local schools where these kids attend and asked them to provide laptops and hotspots to kids who needed technology. Our local school district has computers and hotspots that they issue to kids during the regular school year, and they were willing to issue them out for the virtual camp.
• Then, we contacted companies that provide online access to the software that we wanted to include in our activities. We wanted free, web-based software so that the kids wouldn’t have to download software, and so that cost would not be an obstacle.
Tools/platforms used:

- Zoom to deliver the camp
- Schoology for the LMS; the school was reluctant to allow use of our regular LMS, D2L
- Self-CAD for the CAD activities
- ArcGIS online for GIS activities
- VEXcode VR for robotics
- Code.org for programming
- YouTube for videos
- Wheel of Names for daily drawings for “door prizes.” Kids had to be present to win.
Lessons learned

- Issues with video access
- A few technology problems with school-issued computers
- Great reviews from the kids
- Easily adapted for other outreach

- This was very doable and the camp received good reviews from the kids. We were also able to provide a summer camp experience for many kids who have not been able to attend our camps due to cost.
- The school-issued computers could not play YouTube videos because the school blocks them.
- A small number of kids had issues with the school-issued computers. We did a technology run-through on the Friday before but some kids couldn’t attend. I would do that earlier in the week and ask schools to issue computers at least a week ahead so that we can head off any technology issues.
- Repurposing content for other engagement opportunities:
 - We can use what we developed to do half-day workshops.
 - We can also expand it for future camps.
 - Expand this kind of programming beyond summertime
 - Opportunities to do fall and spring camps during school breaks, as well as workshops and field studies. We did a Spring virtual camp this year.
 - We can also adapt for different age groups.
Thank you!

TRANSPORTATION, DISTRIBUTION AND LOGISTICS

~

ADVANCED MANUFACTURING TECHNOLOGIES

PI: Debra Jones jonesdh@octech.edu
Co-PI: Richard Murphy murphycr@octech.edu
Project Manager: Shirlan Mosely-Jenkins mosleysp@octech.edu

Here is our contact information. If you have any questions or if we can be of help with your project, don’t hesitate to reach out. Thank you and enjoy the conference.