FLATE’s Future of Work Caucus 2021

View the video recording on YouTube
Caucus Project Team

Marilyn Barger, Ph.D., P.E. Executive Director, FLATE
Sam Ajlani Professor, College of Central Florida
Richard Gilbert, Ph.D. University of South Florida
June Wolfe Director, Network Engagement, FloridaMakes
Tina Berger Director, Talent Development, FloridaMakes
Phil Centonze Director, Client Engagement Services, FloridaMakes
Caucus Grant:

Technician Future of Work Issues
Caucus for Florida Community Colleges and Manufacturers

GOAL: Identify technologies in Florida’s small to medium manufacturers that directly contribute to Florida’s technicians’ skills gap.

(NSF ATE #1939173)
Industry 4.0 Technologies

- Autonomous robots
- Big data and analytics
- Simulation
- Augmented reality
- Horizontal and vertical system integration
- Additive manufacturing
- The cloud
- Cybersecurity
- The industrial Internet of Things

Nine Technologies Are Transforming Industrial Production

Source: BCG analysis.
Caucus Grant Activities

- Research Industry 4.0 technologies
- Develop questionnaires
- Distribute questionnaires
- Collect and analyze results
- Share / discuss at virtual Caucus
- Disseminate
- Review input from Caucus
- Find curriculum gaps; publish results
- Implement findings
Future of Work for Technicians Questionnaire

- Company (College)
- Industry sector/college program
- County
- Name
- Number employees/number of graduates
- Future of Work Skills (select top 5 of 15 skill areas in 4 technology areas)
- Number of future technician hires and students graduating
- Level of anticipated technician hires (entry, mid, high level)
- Importance of Industry Credentials and which credentials

- Open 3+ weeks
- Responses
 - 133 manufacturers (of >2000 invitees)
 - 26 college educators (of 50 invitees)
Industry 4.0 Technologies

- Production Technician Skills

Nine Technologies Are Transforming Industrial Production

- Autonomous robots
- Big data and analytics
- Simulation
- Augmented reality
- Horizontal and vertical system integration
- Additive manufacturing
- The cloud
- Cybersecurity
- The industrial Internet of Things

Source: BCG analysis.
Summary Questionnaire Responses
Google map of Responses

- 133 Manufacturers
- 26 Colleges

Link to live map
Questionnaire Skills Questions

For Manufacturers:
In the following technologies and their related skill sets, please select the top 5 technician skills below that will be impacted by emerging technologies you plan for your company within the next 5 years.

For Educators
In the following technologies and their skill sets, please select the top 5 technician skills that you feel will be impacted by emerging technologies for your service area within the next 5 years.

Skills Data Analysis
1-minute Overview Video
Skills Data Analysis 1-minute Overview Video
Manufacturers (133)

- Autonomous Robots;
- Programming
- System Integration
- Repair
- Simulation;
- Perform Root Cause Analysis

Participate in Planning & Evaluation Processes

- Compare & Contrast Process Alternative
- Recommend new situations & their effects on process response to change
- Participate in developing existing & new products & operations

- Industrial Internet of Things;
- Ethernet Communication (M2M);
- Record and store data
- Additive/Subtractive & Advanced Materials;
- 3D CAD and printing/prototyping
- CNC programming
- Precision Manufacturing
- Fabrication
- Testing (destructive /non-destructive
Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers

Manufacturers (133)

- Autonomous Robots; Programming System Integration Repair
- Simulation;
- Perform Root Cause Analysis
- Participate in Planning & Evaluation Processes
- Compare & Contrast Process Alternative
- Recommend new situations & their effects on process response to change
- Participate in developing existing & new products & operations
- Industrial Internet of Things;
- Ethernet Communication (M2M);
- Record and store data
- Additive/Subtractive & Advanced Materials;
- 3D CAD and printing/prototyping
- CNC programming
- Precision Manufacturing
- Fabrication
- Testing (destructive /non-destructive

(21 Colleges)

- 52% Automate
- 60% Additive/Subtractive & Advanced Materials
- 48% 3D CAD and printing/prototyping
- 48% CNC programming
- 48% Ethernet Communication (M2M);
- 40% Industrial Internet of Things;
- 36% Participate in developing existing & new products & operations
- 34% Participate in Planning & Evaluation Processes
- 33% Recommend new situations & their effects on process response to change
- 30% Perform Root Cause Analysis
- 24% Compare & Contrast Process Alternative
- 24% Participate in Planning & Evaluation Processes
- 22% Automate
- 12% 3D CAD and printing/prototyping
- 12% Additive/Subtractive & Advanced Materials;
- 15% Testing (destructive /non-destructive

20% 30% 40% 50% 60%
Manufacturers (133)

- **Autonomous Robots; Programming**
 - **System Integration**: 34%
- **Repair**: 38%
- **Simulation**: 36%
- **Perform Root Cause Analysis**: 39%
- **Participate in Planning & Evaluation Processes**: 36%
- **Compare & Contrast Process Alternative**: 20%
- **Recommend new situations & their effects on process response to change**: 20%
- **Participate in developing existing & new products & operations**: 20%
- **Industrial Internet of Things**: 36%
- **Ethernet Communication (M2M)**: 30%
- **Record and store data**: 24%
- **Additive/Subtractive & Advanced Materials**: 30%
- **3D CAD and printing/prototyping**: 36%
- **CNC programming**: 39%
- **Precision Manufacturing**: 42%
- **Fabrication**: 48%
- **Testing (destructive /non-destructive)**: 30%

(21 Colleges)

- **Autonomous Robots; Programming**
 - **System Integration**: 52%
- **Repair**: 24%
- **Simulation**: 40%
- **Perform Root Cause Analysis**: 40%
- **Participate in Planning & Evaluation Processes**: 24%
- **Compare & Contrast Process Alternative**: 20%
- **Recommend new situations & their effects on process response to change**: 20%
- **Participate in developing existing & new products & operations**: 12%
- **Industrial Internet of Things**: 22%
- **Ethernet Communication (M2M)**: 22%
- **Record and store data**: 12%
- **Additive/Subtractive & Advanced Materials**: 48%
- **3D CAD and printing/prototyping**: 60%
- **CNC programming**: 48%
- **Precision Manufacturing**: 48%
- **Fabrication**: 36%
- **Testing (destructive /non-destructive)**: 20%
Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers

Manufacturers (133)

- Autonomous Robots; Programming System Integration
- Repair
- Simulation;
- Perform Root Cause Analysis
- Participate in Planning & Evaluation Processes
- Compare & Contrast Process Alternative
- Recommend new situations & their effects on process response to change
- Participate in developing existing & new products & operations
- Industrial Internet of Things;
 Ethernet Communication (M2M);
 Record and store data
- Additive/Subtractive & Advanced Materials;
 3D CAD and printing/prototyping
- CNC programming
- Precision Manufacturing
- Fabrication
- Testing (destructive /non-destructive

(21 Colleges)
Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers

- Participate in Planning & Evaluation Processes
 - Compare & Contrast Process Alternative
 - Recommend new situations & their effects on process response to change
 - Participate in developing existing & new products & operations
- Perform Root Cause Analysis
- Manufacturers (133)
 - Autonomous Robots;
 - Programming
 - System Integration
 - Repair
 - Simulation;
- (21 Colleges)
 - 20%
 - 30%
 - 40%
 - 50%
 - 60%
- 51%
- 36%
- 34%
- 18% difference
- 12%
- 52%
- 60%
- 39% difference
- 18% difference
- Additive/Subtractive & Advanced Materials;
- 3D CAD and printing/prototyping
- CNC programming
- Precision Manufacturing
- Fabrication
- Participate in developing existing & new products & operations
- Industrial Internet of Things;
- Ethernet Communication (M2M);
- Record and store data
- Autonomous Robots;
- Programming
- System Integration
- Repair
- Simulation;

Testing (destructive /non-destructive)
Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers

Manufacturers (133)

- System Integration as a taught skill
 - 40% (50%)
 - 30% (40%)
 - 20% (30%)

- System Integration as a needed skill
 - 38% (40%)
 - 34% (36%)

20% 30% 40% 50%

(21 Colleges)

- System Integration as a taught skill
 - 56% (52%)

- System Integration as a needed skill
 - 51% (52%)
 - 36% (34%)

20% 30% 40% 50% 60%

- Participate in Planning & Evaluation Processes
- Compare & Contrast Process Alternative
- Recommend new situations & their effects on process response to change

- Develop existing and new products & operations as needed skill
 - 51% (39% difference)

- 3D CAD/prototyping as a needed skill
 - 36% (24% difference)

- Perform Root Cause Analysis
- Simulation;

- Participate in developing existing & new products & operations

- System Integration as a taught skill
 - 52% (56%)

- System Integration as a needed skill
 - 40% (42%)
 - 34% (36%)

- Repair
- Programming

- Autonomous Robots; Programming
- System Integration
- Repair

- Additive/Subtractive & Advanced Materials;

- 3D CAD and printing/prototyping
- CNC programming
- Precision Manufacturing
- Fabrication

- Industrial Internet of Things;
- Ethernet Communication (M2M);

- Participate in developing existing & new products & operations
- Record and store data

- Autonomous Robots; Programming
- System Integration
- Repair

- Participate in Planning & Evaluation Processes
- Compare & Contrast Process Alternative
- Recommend new situations & their effects on process response to change

- System Integration as needed skill
 - 38% (40%)
 - 34% (36%)

- 3D CAD/prototyping as needed skill
 - 36% (24% difference)

- Repair
- Programming

- Autonomous Robots; Programming
- System Integration
- Repair

- Additive/Subtractive & Advanced Materials;

- 3D CAD and printing/prototyping
- CNC programming
- Precision Manufacturing
- Fabrication

- Industrial Internet of Things;
- Ethernet Communication (M2M);
- Participate in developing existing & new products & operations
- Record and store data

- Autonomous Robots; Programming
- System Integration
- Repair

- Participate in Planning & Evaluation Processes
- Compare & Contrast Process Alternative
- Recommend new situations & their effects on process response to change

- System Integration as needed skill
 - 38% (40%)
 - 34% (36%)

- 3D CAD/prototyping as needed skill
 - 36% (24% difference)
The Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers has identified significant industry-related skills gaps. The skills in high demand include System Integration as a taught skill, System Integration as a needed skill, and Developing existing and new products & operations as needed skill. These skills are taught at 34%, 38%, and 51% of manufacturers (133) respectively.

In contrast, skills such as Repair, Simulation, and Performance Root Cause Analysis are not being taught at all (12%). The skills that are taught are 3D CAD/prototyping, CNC programming, and Precision Manufacturing. These skills are taught at 36%, 34%, and 34% respectively.

The skills in low demand include 3D CAD and printing/prototyping, as a taught skill at 24% and as a needed skill at 20%. The skills that are being taught are Automation Systems, as a taught skill at 56% and as a needed skill at 52%.

The differences in percentage of skills taught at Florida Community Colleges and Manufacturers range from 18% to 39%.
Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers

Manufacturers (133)

- System Integration as a taught skill
 - 34% taught
 - 38% needed
 - 18% difference

- System Integration as a needed skill
 - 51% needed
 - 56% taught
 - 5% difference

- System Integration as a taught skill
 - 52% taught
 - 56% needed
 - 4% difference

(21 Colleges)

- 3D CAD/prototyping as a needed skill
 - 36% needed
 - 60% taught
 - 24% difference

- 3D CAD/prototyping as a taught skill
 - 40% taught
 - 60% needed
 - 20% difference

- 3D CAD and printing/prototyping
- CNC programming
- Precision Manufacturing
- Fabrication
- Testing (destructive/non-destructive)

Industry related skills gap

High demand
- Develop existing and new products & operations as needed skill
 - 51% needed
 - 56% taught
 - 5% difference

Low demand
- 3D CAD/prototyping as a taught skill
 - 36% taught
 - 60% needed
 - 24% difference

A skill that basically is not being taught at all
- 12% needed
- 60% taught
- 48% difference

A skill that is taught at 12 colleges across Florida
- 51% taught
- 60% needed
- 9% difference
Summary Skills Results

<table>
<thead>
<tr>
<th>TECHNOLOGY and SKILLS SETS</th>
<th>MANUFACTURERS</th>
<th>EDUCATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Robots: Programming</td>
<td>34</td>
<td>52</td>
</tr>
<tr>
<td>Autonomous Robots: System integration</td>
<td>38</td>
<td>56</td>
</tr>
<tr>
<td>Autonomous Robots: Repair</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Simulation: Perform root cause analysis</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Simulation: Participate in planning and evaluation processes</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>Simulation: Compare & contrast process alternatives</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Simulation: Recommend new situations & their effects on process responses</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Simulation: Participate in developing existing & new products & operations</td>
<td>51</td>
<td>12</td>
</tr>
<tr>
<td>Industrial Internet of Things: Ethernet Communication (M2M)</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>Industrial Internet of Things: Record and store data</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>Additive/Subtractive & Advanced Materials: 3D CAD & printing, prototype</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>Additive/Subtractive & Advanced Materials: CNC programming</td>
<td>33</td>
<td>48</td>
</tr>
<tr>
<td>Additive/Subtractive & Advanced Materials: Fabrication</td>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td>Additive/Subtractive & Advanced Materials: Destructive/non testing</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>
Summary Skills Data - Questions

• Which skills were selected more often by manufacturers?
• Which skills were selected more often by educators?
• Which skills were selected <30% by both?
• Which skills were selected by both over 30%
• Which skills had big gaps of manufacturers > educators?
• Which skills had big gaps of educators over manufacturers?
Summary Skills Results

<table>
<thead>
<tr>
<th>TECHNOLOGY AREAS and SKILLS</th>
<th>% MANUFACTURERS</th>
<th>% EDUCATORS</th>
<th>% DELTA</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Robots: Programming</td>
<td>34</td>
<td>52</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>Autonomous Robots: System integration</td>
<td>38</td>
<td>56</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Simulation: Perform root cause analysis</td>
<td>39</td>
<td>40</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Simulation: Participate in planning and evaluation processes</td>
<td>36</td>
<td>24</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Simulation: Recommend new situations & the effects on process responses</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Simulation: Participate in developing existing & new products & processes</td>
<td>51</td>
<td>12</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Internet of Things: Record and store data</td>
<td>36</td>
<td>60</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>Additive/Subtractive & Advanced Materials: 3D CAD & printing, prototype</td>
<td>39</td>
<td>48</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Additive/Subtractive & Advanced Materials: CNC programming</td>
<td>33</td>
<td>48</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Additive/Subtractive & Advanced Materials: Fabrication</td>
<td>42</td>
<td>36</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Caucus Grant Activities

- Research Industry 4.0 technologies
- Collect and analyze results
- Find curriculum gaps; publish results
- Develop questionnaires
- Share / discuss at virtual Caucus
- Disseminate
- Distribute questionnaires
- Review input from Caucus
- Implement findings
Questions we asked for each of the skill areas selected for discussion.

1. What is the technician’s role?
2. What skills do technicians need in that role?
Autonomous Robots: Programming and Systems Integration

<table>
<thead>
<tr>
<th>Q1 What is the technician’s role in new product/process development?</th>
<th>Q2 What skills do technicians need in that role?</th>
</tr>
</thead>
<tbody>
<tr>
<td>execution</td>
<td>How the process works today, so that the output from the robot is the same. A technician would know what the expected outcome should be</td>
</tr>
<tr>
<td>Our QT is on of our main programmers</td>
<td>continue education by attending more seminars</td>
</tr>
<tr>
<td>programming</td>
<td>basic mathematics</td>
</tr>
<tr>
<td>heavily involved in programming, systems integration, testing setup, etc.</td>
<td>programming, troubleshooting, - techs executing, problem solving, interpreting</td>
</tr>
<tr>
<td>being able to translate the "current state" to future state</td>
<td></td>
</tr>
<tr>
<td>safety analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>support mockup/test</td>
</tr>
<tr>
<td>2</td>
<td>provide design data</td>
</tr>
<tr>
<td>3</td>
<td>testing & executing</td>
</tr>
<tr>
<td>4</td>
<td>quality testing</td>
</tr>
<tr>
<td>5</td>
<td>prototyping</td>
</tr>
<tr>
<td>6</td>
<td>critical thinking</td>
</tr>
<tr>
<td>7</td>
<td>data interpretation</td>
</tr>
<tr>
<td>8</td>
<td>3D printing</td>
</tr>
<tr>
<td>9</td>
<td>material knowledge</td>
</tr>
<tr>
<td>10</td>
<td>material testing</td>
</tr>
<tr>
<td>11</td>
<td>destructive testing</td>
</tr>
<tr>
<td>12</td>
<td>ask 5 whys</td>
</tr>
<tr>
<td>13</td>
<td>fishbones</td>
</tr>
<tr>
<td>14</td>
<td>brainstorming</td>
</tr>
<tr>
<td>15</td>
<td>use the Root Cause tools</td>
</tr>
<tr>
<td>16</td>
<td>write SOP</td>
</tr>
<tr>
<td>17</td>
<td>cloud</td>
</tr>
<tr>
<td>18</td>
<td>integrating systems, PLC</td>
</tr>
<tr>
<td>19</td>
<td>data integrity</td>
</tr>
<tr>
<td>20</td>
<td>programming</td>
</tr>
<tr>
<td>21</td>
<td>troubleshooting</td>
</tr>
<tr>
<td>22</td>
<td>interdisciplinary skills</td>
</tr>
<tr>
<td>23</td>
<td>ensure measurement have uncertainty stated</td>
</tr>
<tr>
<td>24</td>
<td>basic understanding of databases & networks</td>
</tr>
<tr>
<td>25</td>
<td>spreadsheet creation & manipulation</td>
</tr>
<tr>
<td>26</td>
<td>CAD for layout of production processes</td>
</tr>
<tr>
<td>27</td>
<td>math, communication, teamwork, solve problem</td>
</tr>
<tr>
<td>28</td>
<td>human factors and interactions</td>
</tr>
<tr>
<td>29</td>
<td>write technical reports and data</td>
</tr>
<tr>
<td>30</td>
<td>reverse engineering</td>
</tr>
<tr>
<td>31</td>
<td>building /assembling prototypes</td>
</tr>
<tr>
<td>32</td>
<td>use technology tools to identify root causes</td>
</tr>
<tr>
<td>33</td>
<td>awareness of the security requirement</td>
</tr>
<tr>
<td>34</td>
<td>identify opportunities for improved products</td>
</tr>
<tr>
<td>35</td>
<td>knowledge of product standards and regulations</td>
</tr>
<tr>
<td>36</td>
<td>integration of eng tech/adv mfg / computing</td>
</tr>
<tr>
<td>37</td>
<td>diagnose & understanding full process</td>
</tr>
</tbody>
</table>
37 Essential Technician Skills – 6 categories

<table>
<thead>
<tr>
<th>6 - CATEGORIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpersonal skills</td>
<td>System Integration</td>
</tr>
<tr>
<td>Problem Solving - quality</td>
<td>Prototyping</td>
</tr>
<tr>
<td>Problem Solving - maintenance</td>
<td>Big data and analytics</td>
</tr>
</tbody>
</table>
2 Pathways to analyze the 37 Skills

37 Essential Skills

Alignment to FDOE Frameworks

Defining 5 Critical Crosscutting Skills
5 Critical Crosscutting Technician Skills – in all categories

<table>
<thead>
<tr>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpersonal skills</td>
</tr>
<tr>
<td>Problem Solving – quality</td>
</tr>
<tr>
<td>Problem Solving – maintenance</td>
</tr>
</tbody>
</table>

5 Crosscutting Skills Found in all Categories

1. Technician involvement with engineering
2. Critical thinking
3. Integrating systems
4. Interdisciplinary skills
5. Diagnostics and understanding the full process
Future Research

<table>
<thead>
<tr>
<th>SKILLS MISSING in the FDOE Framework Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>data integrity</td>
</tr>
<tr>
<td>data interpretation</td>
</tr>
<tr>
<td>basic understanding of databases & networks</td>
</tr>
<tr>
<td>cloud</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUESTIONABLE - assumed from standards or might need more and more clarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>data interpretation</td>
</tr>
<tr>
<td>building/ assembling prototypes</td>
</tr>
<tr>
<td>integration of engineering tech/advanced manufacturing mfg/computing</td>
</tr>
<tr>
<td>interdisciplinary skills</td>
</tr>
<tr>
<td>write technical reports and data</td>
</tr>
</tbody>
</table>
Questions we asked ourselves about the gaps

Are these skills really 2-yr graduate (entry level technician skills) or are they higher level (post 2-yr)?

• Are any of these Bachelor level skills?

• Are they for more experienced or possibly more specialized technicians - (moved up, changed focus, etc) and now are working more with data/IT?

• Other options?
Circling back to the Industry 4.0 Technologies

37 Skills

Industry 4.0

Nine Technologies Transforming Industry
NEXT: Implementing Change

EDUCATION OPTIONS
• 2-year program reviews are every 3 years (state level)
• College Credit Certificate
• Special topic electives

SPECIFIC TRAINING OPTIONS
• Interact with FloridaMakes to meet manufacturers needs
• Education equipment suppliers
• OEM training
FLATE’s Future of Work Caucus Update

Marilyn Barger: Marilyn.Barger@flate.org
Richard Gilbert: gilbert@usf.edu

Caucus webpage: http://fl-ate.org/programs/nsf-ate-future-of-work-caucus/

Preparing Technicians for the Future of Work site: www.preparingtechnicians.org